

CHEMISTRY STANDARD LEVEL PAPER 2

Thursday 16 May 2013 (afternoon)

1 hour 15 minutes

0 0			.andı	date	sess	ion r	numb	er	
	0	0							

Examination code

	2	2	1	3	_	6	1	1	1
ı		l		l			l		

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Section A: answer all questions.
- Section B: answer one question.
- Write your answers in the boxes provided.
- A calculator is required for this paper.
- A clean copy of the *Chemistry Data Booklet* is required for this paper.
- The maximum mark for this examination paper is [50 marks].

SECTION A

Answer all questions. Write your answers in the boxes provided.

1. A student decided to determine the molecular mass of a solid monoprotic acid, HA, by titrating a solution of a known mass of the acid.

The following recordings were made.

Mass of bottle / $g \pm 0.001 g$	1.737
Mass of bottle + acid HA / $g \pm 0.001 g$	2.412

a)	Calculate the mass of the acid and determine its absolute and percentage uncertainty.	[2]
b)	This known mass of acid, HA, was then dissolved in distilled water to form a 100.0 cm ³ solution in a volumetric flask. A 25.0 cm ³ sample of this solution reacted with 12.1 cm ³ of	
(b)	This known mass of acid, HA, was then dissolved in distilled water to form a 100.0 cm ³ solution in a volumetric flask. A 25.0 cm ³ sample of this solution reacted with 12.1 cm ³ of a 0.100 mol dm ⁻³ NaOH solution. Calculate the molar mass of the acid.	[3]
b)	solution in a volumetric flask. A 25.0 cm ³ sample of this solution reacted with 12.1 cm ³ of	[3]
b)	solution in a volumetric flask. A 25.0 cm ³ sample of this solution reacted with 12.1 cm ³ of	[3]
b)	solution in a volumetric flask. A 25.0 cm ³ sample of this solution reacted with 12.1 cm ³ of	[3]
(b)	solution in a volumetric flask. A 25.0 cm ³ sample of this solution reacted with 12.1 cm ³ of	[3]
b)	solution in a volumetric flask. A 25.0 cm ³ sample of this solution reacted with 12.1 cm ³ of	[3]
b)	solution in a volumetric flask. A 25.0 cm ³ sample of this solution reacted with 12.1 cm ³ of	[3]
b)	solution in a volumetric flask. A 25.0 cm ³ sample of this solution reacted with 12.1 cm ³ of	[3]
b)	solution in a volumetric flask. A 25.0 cm ³ sample of this solution reacted with 12.1 cm ³ of	[3

(Question 1 continued)

(c)	The percentage composition of HA is 70.56% carbon, 23.50% oxygen and 5.94% hydrogen. Determine its empirical formula.	[2]
(d)	A solution of HA is a weak acid. Distinguish between a weak acid and a strong acid.	[1]
(e)	Describe an experiment, other than measuring the pH, to distinguish HA from a strong acid of the same concentration and describe what would be observed.	[2]

2.

Table 8 of the Data Booklet shows the atomic and ionic radii of the elements. Describe and explain the trend in atomic radius across period 3. (a) [3] A student formulates the following hypothesis: "If phosphorus were to form a positive (b) ion, P^{3+} , its ionic radius would probably be between 110×10^{-12} m and 212×10^{-12} m." Evaluate this hypothesis. [2]

[3]

- 3. Both sodium and sodium chloride can conduct electricity.
 - (a) Compare how electric current passes through sodium and sodium chloride by completing the table below.

	Sodium	Sodium chloride
State of matter		
Particles that conduct the current		
Reaction occurring		

(Question 3 continued)

(b)	Sodium can be obtained by electrolysis from molten sodium chloride. Describe, using a diagram, the essential components of this electrolytic cell.	[3]
(c)	State one example that shows the economic importance of electrolysis.	[1]

4. Ethanedioic acid (oxalic acid), (COOH)₂, reacts with acidified potassium permanganate solution, KMnO₄, according to the following equation.

$$5(COOH)_2(aq) + 2MnO_4^-(aq) + 6H^+(aq) \rightarrow 10CO_2(g) + 2Mn^{2+}(aq) + 8H_2O(l)$$

The reaction is a redox reaction.

(a) Define *oxidation* in terms of electron transfer. [1]

.....

(b) Calculate the change in oxidation numbers of carbon and manganese. [2]

Carbon:

...

Manganese:

(c) Identify the oxidizing and reducing agents. [1]

Oxidizing agent:

Reducing agent:

5. The following diagram shows the three-dimensional structure of a molecule.

(a)	Apply IUPAC rules to state the name of this molecule.	[1]
(b)	Deduce the structural formula of two isomers of the molecule above with the same functional group.	[2]
(c)	Describe, using an equation, the oxidation by acidified potassium dichromate(VI) of the	
(c)	Describe, using an equation, the oxidation by acidified potassium dichromate(VI) of the substance shown in the diagram. Use the symbol [O] to represent the oxidizing agent.	[1

[1]

SECTION B

Answer one question. Write your answers in the boxes provided.

(a)

6. The element boron has two naturally occurring isotopes, ¹⁰B and ¹¹B.

Define the term isotopes of an element.

(ii)	Calculate the percentage abundance of each isotope, given that the relative atomic	
	mass of B is 10.81.	
		_

(Question 6 continued)

(b) The percentage abundance of the isotopes of boron can be determined with a mass spectrometer. The diagram shows the operation of a mass spectrometer.

(i)	State the names of stages R and S .	[1]
	R:	
	S:	

(ii) Deduce the number of protons, neutrons and the electron arrangement of the main ion of ¹¹B formed in stage **Q**. [2]

P	rot	toı	ıs:																											
N	Ieu	ıtr	on	s:																										
Е	lec	etr	on	aı	rra	ınş	ge	m	.eı	1t:																				

(iii)	Identify the species that is used as the scale for the mass of the isotopes.
(i)	Deduce the Lewis structures of NH ₃ and BF ₃ .
	NH ₃ BF ₃
(ii)	Describe how covalent bonds are formed.
(iii)	Compare the shapes of the two molecules and explain the difference using valence shell electron pair repulsion theory (VSEPR).
(iii)	Compare the shapes of the two molecules and explain the difference using valence shell electron pair repulsion theory (VSEPR).
(iii)	
(iii)	Compare the shapes of the two molecules and explain the difference using valence shell electron pair repulsion theory (VSEPR).
(iii)	Compare the shapes of the two molecules and explain the difference using valence shell electron pair repulsion theory (VSEPR).
(iii)	Compare the shapes of the two molecules and explain the difference using valence shell electron pair repulsion theory (VSEPR).
(iii)	Compare the shapes of the two molecules and explain the difference using valence shell electron pair repulsion theory (VSEPR).

(Question 6 continued)

(i)	Define an <i>acid</i> according to the Lewis theory.
(ii)	State and explain the acid–base character of NH_3 and BF_3 according to the Lewis theory.
(ii)	
(ii)	
(ii)	State and explain the acid-base character of NH ₃ and BF ₃ according to the Lewis theory.
(ii)	
(ii)	Lewis theory.

7.

To determine the enthalpy change of combustion of methanol, CH₃OH, 0.230 g of methanol was

combusted in a spirit burner. The heat released increased the temperature of 50.0 cm³ of water from 24.5°C to 45.8°C. Calculate the enthalpy change of combustion of methanol. (a) (i) [4] Using the theoretical value in Table 12 of the Data Booklet, discuss the experimental (ii) results, including one improvement that could be made. [3]

(This question continues on the following page)

Turn over

(Question 7 continued)

(b) Methanol can be produced according to the following equation.

$$CO(g) + 2H_2(g) \rightarrow CH_3OH(l)$$

Calculate the standard enthalpy change of this reaction using the following data:

I:
$$2\text{CH}_3\text{OH}(1) + 3\text{O}_2(g) \rightarrow 2\text{CO}_2(g) + 4\text{H}_2\text{O}(1)$$
 $\Delta H^{\ominus} = -1452 \text{ kJ mol}^{-1}$

II: $2\text{CO}(g) + \text{O}_2(g) \rightarrow 2\text{CO}_2(g)$ $\Delta H^{\ominus} = -566 \text{ kJ mol}^{-1}$

III: $2\text{H}_2(g) + \text{O}_2(g) \rightarrow 2\text{H}_2\text{O}(1)$ $\Delta H^{\ominus} = -572 \text{ kJ mol}^{-1}$ [3]

(Question 7 continued)

(c) The manufacture of gaseous methanol from CO and H₂ involves an equilibrium reaction.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

$$\Delta H^{\ominus} < 0$$

(i) Outline the characteristics of a chemical equilibrium.

[2]

(ii) Deduce the equilibrium constant expression, K_c , for this reaction.

[1]

(iii) Identify **one** other important industrial synthesis that is an equilibrium reaction.

[1]

	• •

(Question 7 continued)

	and explain the effect of the following changes on the equilibrium position of the reactive rt (c).	
(i)	Increase in temperature.	[2]
(ii)	Increase in pressure.	[2]
()		
(iii)	Addition of a catalyst.	[2]

8.

Ethene belongs to the homologous series of the alkenes. Outline three features of a homologous series. (a) [3] Describe a test to distinguish ethene from ethane, including what is observed in (ii)each case. [2] (iii) Bromoethane can be produced either from ethene or from ethane. State an equation for each reaction. [2]

(This question continues on the following page)

Turn over

(Question 8 con	tinued	
-----------------	--------	--

(i)	State the equa	ition fo	or the reaction of C ₄ H ₉ B	r with NaOH.		
(ii)	Suggest what	would	happen to the pH of th	e solution as the reaction p	roceeds.	
				luct using different initial core shown in the following to		S
		H is m				8
	Reaction A	H is m	easured. The results ar $[4H_9Br] / 10^{-2} \text{ mol dm}^{-3}$ 1.0	[NaOH] / 10 ⁻³ mol dm ⁻³ 2.0	t/s 46	5
	C ₄ H ₉ Br and NaO	H is m	easured. The results ar $_4H_9Br] / 10^{-2} \text{ mol dm}^{-3}$	re shown in the following to [NaOH] / 10 ⁻³ mol dm ⁻³	able.	S
of C	Reaction A B C	on [C	easured. The results are $_{4}H_{9}Br] / 10^{-2} mol dm^{-3}$ 1.0 2.0 2.0	re shown in the following to [NaOH] / 10 ⁻³ mol dm ⁻³	t/s 46 23 23	
of C	Reaction A B C	on [C	easured. The results are $_{4}H_{9}Br] / 10^{-2} mol dm^{-3}$ 1.0 2.0 2.0	[NaOH] / 10 ⁻³ mol dm ⁻³ 2.0 2.0 4.0	t/s 46 23 23	
of C	Reaction A B C	on [C	easured. The results are $_{4}H_{9}Br] / 10^{-2} mol dm^{-3}$ 1.0 2.0 2.0	[NaOH] / 10 ⁻³ mol dm ⁻³ 2.0 2.0 4.0	t/s 46 23 23	
	C_4H_9Br and NaO Reaction A B C Deduce the eff C_4H_9Br :	on [C	easured. The results are $_{4}H_{9}Br] / 10^{-2} mol dm^{-3}$ 1.0 2.0 2.0	[NaOH] / 10 ⁻³ mol dm ⁻³ 2.0 2.0 4.0	t/s 46 23 23	

(Question 8 continued)

(ii)	Suggest why warm sodium hydroxide solution is used.	[1]
(iii)	Deduce whether C ₄ H ₉ Br is a primary or tertiary halogenoalkane.	[2]
(iv)	Determine the structural formula of C_4H_9Br .	[1]
(v)	Describe, using an equation, how C ₄ H ₉ Br can be converted into C ₄ H ₈ Br ₂ .	[1]

(This question continues on the following page)

Turn over

(Question 8 continued)

e mechanism fo		Di willi NaOli	, using curry t	arrows

